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The prediction of inclusion of molecules in the hosting framework of the cephalosporin antibiotic cephradine has
been investigated. For this purpose linear discriminant analysis has been applied on molecular similarity data. The
way the molecular similarity is calculated appeared to be extremely important. The charge distribution similarity of
two molecules calculated at optimal shape overlap, is most appropriate to derive a computational model. The
predictive power of the model increases when the molecular similarity of a molecule with respect to only a limited
number of guiding compounds is used. The ultimate outcome is that complexing behaviour of a molecule can be
predicted using a simple equation containing the similarity indices of that molecule with respect to three guiding
compounds only. The model eventually obtained can predict the complexing behaviour of independent test sets of
molecules with an average score of 86%.

Introduction
During the last decade the importance of computational
chemistry and chemometrics has increased significantly. These
techniques have had a substantial impact on the developments
in several fields of chemistry. In particular, the field of medi-
cinal chemistry has benefited immensely from the predictive
power of techniques such as docking and quantitative structure
activity relationships (QSAR).

Docking is especially useful for fitting molecules into cavities,
such as active sites of biological targets. An essential require-
ment to perform a docking search is knowledge of the
molecular structure of the binding site. Docking has been
successfully employed for studying the interaction energies in
protein–ligand complexes,1 and also plays an important role
in de novo drug design.2

Whereas docking makes use of the molecular structure of the
binding site, QSAR ignores the binding site and focuses entirely
on the molecular structure of the ligands. In contrast to dock-
ing QSAR only requires knowledge of the molecular structure
of a series of active and non-active ligands for a given binding
site. Starting with a set of known ligands QSAR utilizes various
statistical methods to derive relationships between the mole-
cular structure of the ligands and their affinity for the binding
site. QSAR is based on the assumption that similar molecules
exhibit similar properties.

This paper deals with the problem of identifying new mole-
cules that form clathrates with the cephalosporin antibiotic
cephradine. Clathration of cephalosporins is a valuable meth-
odology for the isolation of these important antibiotics from
aqueous solutions.3,4 A drawback of the currently known com-
plexants, which are all naphthalene derivatives, is their toxicity

† The IUPAC name for cephradine is 7-[-2-amino-2-(cyclohexa-2,4-
dienyl)acetamido]-3-methyl-8-oxo-1-aza-5-thiabicyclo[4.2.0]oct-2-ene-
2-carboxylic acid.

and the inherent environmental image problem associated with
these compounds.5,6 Hence, it is highly relevant from an indus-
trial point of view to identify novel complexing agents having
environmentally more acceptable properties. Moreover, com-
plexants will be used in enzymatic cephalosporin synthesis.
Due to possible enzyme inhibition by complexants, access to a
variety of clathrating agents is desirable. Thus, a predictive
model for identifying new complexants will be very helpful in
addressing the above-mentioned problem. In these clathrates,
the cephradine molecules form the hosting framework in which
the aromatic compounds are hosted. In addition, a number of
water molecules are accommodated in these complexes as well.
Based on the crystal structure of the clathrate type complex of
cephradine and 2-naphthol,7 which is depicted in Fig. 1, a large
series of novel complexing agents for the cephalosporin anti-
biotics could be identified, using chemical intuition as the main
lead. However, due to the capricious behaviour of molecules
regarding complex formation with cephradine, the successful
selection of a new molecule for a complexation experiment
remains a matter of trial and error. Therefore, it is desirable to

Fig. 1 The complex of cephradine and 2-naphthol.
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replace this empirical method by a more rational, preferably
unbiased, design and prediction of new complexing agents.

At first sight docking seems to be an appropriate technique
for fitting a guest molecule in the cavity formed by cephradine
molecules. However, the hosting framework formed by cephra-
dine is rather flexible and exhibits a remarkable adaptability.6 In
addition, the available space for the guest molecule is dependent
on the number of water molecules incorporated in the com-
plex.6 As a consequence, an exact cavity for conceivable guest
molecules cannot be defined, which is an essential requirement
for the docking method. As QSAR ignores the structure of the
binding site and only makes use of the structure of the guest
molecules, this method is suitable to derive a model that can
predict the complexing behaviour of a molecule. Application of
QSAR for the prediction of clathration has no precedent except
our preliminary report on this subject.8

Theory and strategy
QSAR is based on the assumption that similar molecules
exhibit similar properties. The molecular property of interest
may vary from the acidity of a carboxylic acid or the reactivity
of a molecule in a certain reaction to the affinity for a biological
target. This paper deals with the ability of a molecule to form a
complex with cephradine. More difficult than defining the
molecular property is to define and quantify molecular simi-
larity. Basically, the question is how to represent molecules. This
strongly depends on which property of a molecule is the object
of study. As QSAR has not been used for the prediction of
clathration previously, no information about suitable param-
eters could be derived from the literature. For the problem of
fitting a molecule into a cavity formed by cephradine molecules,
the shape and charge distribution of the molecule intuitively
seem to be of prime importance. In addition, 19 physical prop-
erties were selected as global descriptors of the complexing
agents in order to identify other molecular parameters that are
of importance for complex formation with cephradine. It
appeared, however, that from these 19 physical properties no
predictive model could be derived by QSAR, neither did they
contribute any essential information to the molecular similarity
data.8

The molecular similarities and the physical properties of the
guest molecules were calculated using the program Tsar.10 A set
of molecules was selected comprising both complexing agents
and compounds that do not form complexes with cephradine.
The molecular similarities of these molecules were calculated
based on the shape and the charge distribution of the mole-
cules. One way to do this is to optimise shape overlap of two
molecules and subsequently calculate the shape similarity index
in the orientation as depicted in Fig. 2(a). Similarly, the charge
distribution overlap can be optimised followed by calculation

Fig. 2 Shape versus charge distribution similarity. The contours
represent the shapes of molecules a and b, and the grey surfaces
illustrate their charge distributions. (a) Optimal shape alignment; (b)
optimal charge distribution alignment.

of the charge similarity index as is depicted in Fig. 2(b). It
has to be emphasized, however, that two molecules are most
similar when both the shape and the charge similarity are
simultaneously high. Therefore, the following procedure was
followed for the calculation of the similarity matrices. Two
molecules were first aligned with respect to their shapes as is
depicted in Fig. 2(a). At optimal shape alignment their similar-
ities with respect to both shape and charge were calculated. In
this way two similarity matrices were obtained, one containing
the shape similarities (Xshape) and the other containing
the charge similarities at optimal shape overlap (Xcharge).11

This strategy was preferred over calculating shape similarity at
optimal shape overlap and charge similarity at optimal charge
overlap as described above, which can result in misleading data
as is explained in Fig. 2. Although molecules a and b are very
different, calculation of their shape and charge distribution
similarities as depicted in Fig. 2 would result in high similarity
indices. However, when the charge distribution similarity is
calculated at optimal shape alignment (situation (a) in Fig. 2)
the charge similarity index will be much lower.

In order to derive a predicting model from the data consisting
of molecular similarity matrices and physical properties, the
supervised clustering technique “linear discriminant analysis”
(LDA) was employed.12,13 LDA requires that the class type or
property of each object (molecule) is known. This condition is
fulfilled in the present case. Classification by LDA works par-
ticularly well when the relationship between the variables of the
objects and the corresponding class type is of linear nature. For
optimal results, the data subjected to LDA have to fulfil two
important requirements. They should be characterized by a
normal distribution with each cluster having a different mean
value and equal variance. Whether the second requirement is
fulfilled by a data set consisting of a cluster of complexing
molecules and a cluster of non-complexing molecules may be
argued, since the latter can contain molecules which are much
more diverse. However, the molecules selected for the data set
all seem very similar from the point of view of chemical intuition.

The LDA algorithm is forced to search for those variables
(properties) that are able to discriminate between the objects
(complexing and non-complexing agents) in such a way that the
desired clustering can be obtained. As such, it searches for a line
(the discriminant line) in the multivariate space on which the
objects are projected. Meanwhile, the algorithm minimizes the
variance within a cluster and maximizes the variance between
different clusters. As a result an optimal classification of the
individual objects within the clusters is obtained. In case there
are two clusters, only one discriminant function is required. The
principle is illustrated in Fig. 3, where the two classes A and B
have been projected on the discriminant line. When a new
object is projected on the discriminant line, it is classified in
cluster B if the discriminant function is positive, whereas it is
classified in cluster A if the discriminant function is negative. In
Fig. 3 it is shown that the test object T is classified in cluster B
when projected on the discriminant line. Hence, the discrimin-
ant function can be utilized as a model for the prediction of a
property of new objects.

The LDA models derived from the similarity matrices were
validated by three methods, i.e. the LOOM test, the p-test and
the test on an independent test set. The leave-one-out method
(LOOM) removes one compound from the data set, sub-
sequently a new model is calculated based on the remaining
compounds and the removed molecule is predicted. This
method yields an estimate of the prediction error of the derived

Fig. 3 Projection of objects on the discriminant line.
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model. However, as the columns with the similarities of the
removed molecule remain in the matrices, this method may give
a slightly positive biased result.

A second validation method is the permutation test (p-test).
Also in this test one molecule is removed from the data set and
a new model is derived based on the remaining molecules.
However, now the desired clustering of molecules is chosen
randomly, instead of demanding the complexing and non-
complexing molecules to be clustered. The resulting model
gives a fully arbitrary prediction of the removed molecule,
which has a 50% chance of being correct. If in this case the
prediction is much better, then the corresponding model
predicts nonsense. The value of p can be regarded as the
probability that a classification with such an error rate occurs
by chance. Hence, a predictive score of 60% with a low p-value
may be very significant, whereas a predictive score of 90% with
p = 0.2 may be completely useless. In practice, a model for
which the outcome of the p-test gives p < 0.05 is regarded as
significant and p < 0.01 as very significant.

For the third validation the data are divided into a training
set and a test set. The training set is used to derive a model. The
predictive error of the resulting model on the independent test
set is a measure of the predictive value of this model.

Results
The QSAR study started off by using a data set of 99 mole-
cules, comprising 56 complexing agents and 43 non-
complexing molecules. These 99 molecules were subjected to
calculations of the molecular similarity matrices Xshape and
Xcharge, whereby Xshape contains the shape similarities at
optimal shape overlap and Xcharge contains the molecular
similarities with respect to charge distribution at optimal shape
overlap. The combined matrix of Xshape and Xcharge is named
Xshch. Whereas unsupervised methods, such as principal com-
ponent analysis and cluster analysis, are often successful in
structure–activity applications, it appeared impossible to obtain
separation of the complexing and non-complexing molecules
by employing these methods on Xshape, Xcharge and Xshch.8

The results of the first LDA experiment, performed on the
complete matrices Xcharge, Xshape and Xshch (I in Table 1),
show that the LOOM predictions are only slightly above 50%.
Moreover, from the p-tests it must be concluded that the models
are not significant as in all cases p > 0.05. There are two pos-
sible explanations for these results. Either the relationship that
is searched for (the relationship between the structure of a mole-
cule and its complexing behaviour) is not present or the number of
degrees of freedom is too large. The second explanation means
that too many data are used for the modelling procedure. As a
consequence, the LDA model is under-determined. If under-
determination is the problem, this can be circumvented by using
fewer columns to describe the data. The first approach to solve
this problem was to reduce the amount of data by principal
component analysis (PCA).14 The models derived in this approach
were based on 15 to 30 principal components, which explained
91.9 and 96.1% of the data, respectively. However, the results
were disappointing. Hence, another approach was considered.

In a second attempt to solve the problem of under-
determination, a set of 20 guiding compounds was chosen
based on chemical intuition. Subsequently, the LDA model was
derived based on the similarities of all the molecules with these
guiding compounds. This means that the sizes of Xshape and
Xcharge are reduced from 99 × 99 to 99 × 20 matrices. The
results of this approach are also shown in Table 1 (II). From
these results it can be concluded that the predictions based on
Xcharge are very significant, with a reasonable correctness of
67.3%. The matrix Xshape seemingly contains no relevant
information and confuses the information of Xcharge in the
combined matrix Xshch.11

Once a reasonably successful method for the development of

a model was found, the following step was to determine the
predictive value of the model on a test set of independent
molecules. From the results in Table 1 (II) it was concluded that
the matrix Xcharge contains the most relevant information,
hence Xshape and Xshch were ignored in the next experiments.
First, 100 arbitrarily chosen divisions of the complete set of
molecules in training and test sets were made. For all 100 train-
ing sets a model was derived by LDA, which was subsequently
used to predict the test set. This resulted in an average correct
prediction of 62.5%. Although this is slightly lower than the
LOOM prediction based on Xcharge, it is still well above 50%.

The above-mentioned results seem promising, especially con-
sidering the fact that the set of guiding compounds used was
not optimised but chosen on chemical intuition only. Perhaps
even better results can be obtained with an optimised set of
guiding compounds. In order to optimise the set of guiding
compounds a genetic algorithm was used. Genetic algorithms
(GA’s) have been applied to solve complex optimisation prob-
lems in several fields, including chemistry.15,16,17 The principle of
a genetic algorithm is easy to understand. It is based on the
evolutionary phenomena found in nature, such as ‘reproduc-
tion’, resulting in species with chromosomes formed by com-
bination of those from the parents, and selection by the ‘sur-
vival of the fittest’ criterion. A GA is initiated by generating a
population of trial solutions for the subsequent problem. Each
individual of the population is characterized by a chromosome.
In the present case the individual is a set of guiding compounds
with a ‘chromosome’ consisting of a string of compound ID’s
corresponding to the column numbers of the whole set of
molecules (see Table 2). All individuals are subjected to LDA
modelling and the resulting models are evaluated by LOOM.
After the evaluation, the individuals are ranked by their LOOM
scores. Next the best individuals are selected and subsequently
reproduced. The new individuals are then subjected to LDA
and evaluated by LOOM, followed by the above described
sequence until the termination criterion is reached.

To assess whether even smaller sets of guiding compounds
could be used to predict complexation, the GA was allowed to
select a maximum number of either 10 or 20 guiding com-
pounds. Again, only the columns of the data set Xcharge were
used, which after the addition of 21 molecules contained 120
molecules in total resulting in a 120 × 120 matrix (see Table 2;
the extra 21 compounds were predicted by the first models and
then experimentally tested). The LOOM error was used as an
evaluation function. The complete data matrix was divided into
five combinations of training sets with 90 compounds and test
sets with 30 compounds. For each of the five training set–test
set combinations, five GA runs were performed each with a
different initial population. Table 3 shows both the variation in
the size of the guiding sets found by the GA and the variation in
the LOOM results. The best LOOM results are approximately
20% higher than those obtained with the non-optimised guid-
ing set. In fact, even the lowest LOOM scores in Table 3 are
much higher than those in Table 1 (II). Furthermore, the
models described in Table 3 are highly significant according to
the permutation tests performed with 250 permutations. In all
but one case the permutation test gave p = 0.000 and in one case
gave p = 0.004, which still points to a very significant model.
Remarkably, although all guiding sets selected exhibit similar
performance, their compositions are very different. Apparently,

Table 1 The results of LDA on the complete data set (I) and on a data
set with 20 guiding compounds (II)

I II

LOOM (%) p-Test (p) LOOM (%) p-Test (p)

Xshape 53.5 0.160 55.5 0.376
Xcharge 55.5 0.056 67.3 0.000
Xshch 55.5 0.136 62.4 0.020
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Table 2 The data set used to derive the QSAR models

Row ID Name Complex formation

1 1,2,3-Trihydroxybenzene Yes
2 1,3,5-Trihydroxybenzene Yes
3 1,2-Dihydroxybenzene Yes
4 1-Chloronaphthalene Yes
5 1-Naphthol Yes
6 2-Aminobenzoic acid Yes
7 2-Aminophenol Yes
8 2-Hydroxyacetophenone Yes
9 2-Hydroxybenzoic acid methyl ester Yes

10 2-Methoxyacetophenone Yes
11 2-Naphthol Yes
12 3-Aminophenol Yes
13 3-Hydroxybenzoic acid Yes
14 4-Hydroxybenzoic acid Yes
15 4-Methylbenzoic acid methyl ester Yes
16 5-Methoxy-1H-indole Yes
17 Anisole Yes
18 Benzamide Yes
19 Benzoic acid Yes
20 Bipyridine Yes
21 1H-Indene Yes
22 1H-Indole Yes
23 Quinoline Yes
24 Salicylic acid Yes
25 1,2,3,4-Tetrahydro-1-naphthol Yes
26 Toluene Yes
27 Vanillin Yes
28 1,3-Dihydroxybenzene Yes
29 1,4-Dihydroxybenzene Yes
30 Indan-1-one Yes
31 3-Hydroxyacetophenone Yes
32 4-Aminoacetophenone Yes
33 4-Methoxyphenol Yes
34 4-Methylacetophenone Yes
35 Acetophenone Yes
36 Phenol Yes
37 4-Phenylphenol Yes
38 9H-Carbazole Yes
39 9H-Fluorene Yes
40 4-Aminobenzoic acid ethyl ester Yes
41 4-Aminobenzoic acid methyl ester Yes
42 3-Hydroxybenzoic acid methyl ester Yes
43 4-Hydroxybenzoic acid methyl ester Yes
44 1-Nitronaphthalene No
45 4-Aminobenzoic acid No
46 4-Aminophenol No
47 4-Hydroxybenzaldehyde No
48 4-Hydroxypropiophenone No
49 4-Methylbenzoic acid No
50 4-Nitrophenol No
51 Benzaldehyde No
52 Benzoic acid glycol ester No
53 Benzoic acid propanglycol ester No
54 Benzyl alcohol No
55 N,N-Dimethylbenzamide No
56 Propiophenone No
57 2-Bromonaphthalene No
58 2-Nitronaphthalene No
59 o-Acetyloxybenzoic acid No
60 Naphthalene-1-carboxylic acid No
61 Nitrobenzene No
62 1-Phenylethanol No
63 2-Methylcyclohexanone No
64 3-Hydroxybenzyl alcohol No
65 4-Hydroxyacetophenone No
66 4-Hydroxybenzoic acid ethyl ester No
67 4-Methoxyacetophenone No
68 Anthracene No
69 Anthraquinone No
70 Benzoin No
71 Cyclohexanecarboxylic acid No
72 Cyclohexanol No
73 Isophthalic acid No
74 Cinnamic acid No
75 Terephthalic acid No
76 1,2,3,4-Tetrahydronaphthalene No
77 α-Tetralonea No
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Table 2 The data set used to derive the QSAR models

Row ID Name Complex formation

78 Trimesic acidb No
79 2,4-Dihydroxybenzoic acid Yes
80 2,4-Dihydroxybenzoic acid methyl ester Yes
81 2-Aminobenzamide Yes
82 2-Aminobenzoic acid methyl ester Yes
83 2-Methylbenzoic acid Yes
84 3,4,5-Trihydroxybenzoic acid methyl ester Yes
85 3,4-Dihydroxybenzoic acid Yes
86 3,4-Dihydroxybenzoic acid methyl ester No
87 3,5-Dihydroxybenzoic acid Yes
88 3,5-Dihydroxybenzoic acid methyl ester Yes
89 3-Aminobenzoic acid No
90 3-Aminobenzoic acid methyl ester Yes
91 3-Methylbenzoic acid Yes
92 3-Methylbenzoic acid methyl ester Yes
93 Aniline Yes
94 1,2-Diaminobenzene No
95 1,3-Diaminobenzene No
96 1,4-Diaminobenzene No
97 2-Aminopyridine No
98 2-Hydroxypyridine No
99 4-Aminopyridine No

100 1,2,7-Trihydroxynaphthalene Yes
101 1,6-Dihydroxynaphthalene Yes
102 1-Acetonaphthone Yes
103 2,4-Dihydroxy-6-methylpyrimidine No
104 Indan-2-ol No
105 2-Methoxybenzaldehyde Yes
106 2-Methoxybenzoic acid Yes
107 4-Chlorobenzoic acid No
108 4-Hydroxyphenylacetic acid No
109 6-Methoxy-1H-indole Yes
110 Benzylamine No
111 Coumarin Yes
112 Phthalic acid No
113 m-Anisidine Yes
114 Methyl benzoate Yes
115 N,N-Dimethyl-4-nitroaniline No
116 4-Fluorobenzoic acid No
117 o-Vanillinc No
118 p-Cresol Yes
119 1-Naphthylamine Yes
120 2-(N,N-Dimethylamino)benzoic acid Yes

a The IUPAC name for α-tetralone is 3,4-dihydronaphthalen-1(2H)-one.b The IUPAC name for trimesic acid is benzene-1,3,5-tricarboxylic acid.c The
IUPAC name for o-vanillin is 2-hydroxy-3-methoxybenzaldehyde.

it is not important which individual molecules are in the
guiding set. This is due to the fact that most molecules are
highly similar to at least one or more other molecules within the
complete set of 120 molecules. It is, however, of importance
which combination of guiding molecules is selected for LDA
modelling. As can be concluded from Table 3, there are more
combinations comprising different molecules but exhibiting a
comparable performance during LDA modelling.

By comparing the results in Table 1 with those in Table 3, it is
clear that guiding set selection by a GA has improved both the
LOOM and test set predictions significantly. However, the LOOM
results in Table 3 are still much better than the test set results,
which triggered doubts about the robustness of the model.
Possibly too many guiding compounds were allowed in the GA
optimisation. This has the consequence that the guiding set is
specifically optimised to predict the training set correctly, while
it should be trained for a broad range of molecules. By allowing
a lower number of guiding compounds, the GA has to select
those molecules that are most important for the prediction of
the training set. Hence, a less specialized guiding set is obtained
and prediction of a broader range of molecules can be achieved.

The use of smaller guiding sets was investigated using the
same 120 × 120 Xcharge matrix. This matrix was again divided
into training sets consisting of 90 compounds and independent
test sets of 30 compounds. The GA was used to select guiding

sets containing a maximum of four compounds. Five GA runs
were performed for each training set–test set division. It was
found that the LOOM predictions were generally worse than
those in Table 3, obtained by using larger guiding sets, but the
test set predictions were better and moreover much more in
agreement with the LOOM predictions. All models were evalu-
ated by a permutation test which in all cases gave a p-value of
0.000. A graph of which compounds were selected as guiding
compounds showed that compounds 113, 86 and 83 were prom-
inent, as is depicted in Fig. 4.

It appeared that a prediction based on only these three guid-
ing compounds led to prediction results of 80.0, 93.3, 86.7,
86.7, and 83.3% for the five test sets respectively (86% on aver-
age). The permutation test gave a p-value of 0.000 thus indi-
cating that the model is very significant. From a chemical point
of view, it is difficult to see why the GA selected these three
molecules. A plot of the differences in class mean between the
complexing agents and the non-complexing agents for each of
the 120 compounds in the data set does provide some insight.
This plot is depicted in Fig. 5. Evidently, molecules 86 and 113
belong to the seven compounds with the largest class mean
difference. Despite the fact that molecule 83 is not among these
seven compounds it is still selected by the LDA algorithm, this
in contrast to several other molecules that have much larger
class mean differences. This is because the LDA algorithm
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Table 3 The results obtained by using the GA optimised guiding sets

GA run No. selected a LOOM (%) b Test set (%) c

Maximum 10 guiding compounds 4–10 83.3–92.2 71.4
Maximum 20 guiding compounds 8–15 87.8–94.4 70.3

a The variation in the number of guiding compounds selected in 5 GA runs. b The variation in the LOOM results of the guiding sets resulting from 5
GA runs. c The average prediction result from 5 independent test sets. 

selects those compounds that contain complementary informa-
tion, which is apparently the case for compounds 83, 86 and 113.

As complexation can be predicted by using the similarities of
the molecule with only three guiding compounds, the equation
for calculating the similarity indices is very concise, viz. eqn. (1).
After computation of the similarity indices of a new molecule
with compounds 83, 86 and 113 (S83, S86 and S113 respect-
ively), complexation can be predicted with a certainty of
approximately 86% via eqn. (1). Table 4 illustrates how the
model can be used to predict the complexing behaviour of
molecules. From the similarity indices S83, S86 and S113, the
discriminant function is calculated according to eqn. (1). The
outcome of this prediction has an 86% chance of being in

Fig. 4 The frequency by which the molecules were selected as a
guiding compound.

Fig. 5 A plot of the class mean difference for the 120 compounds of
Xcharge.

agreement with the experimental outcome, which is shown in
the last column.

D > 0 no complexation
D < 0 complexation

Conclusion
A model to predict clathrate formation of molecules with the
cephalosporin antibiotic cephradine has been derived. For this
purpose, linear discriminant analysis (LDA) was employed on
molecular similarity data of a set of molecules comprising both
complexing agents and molecules that do not form a complex
with cephradine. The success of this method strongly depends
on how the molecular similarity indices are calculated.
Furthermore, the amount of similarity data subjected to LDA
should not be too large as this may lead to under-determination
of the model. This problem can be avoided by using the similar-
ities of the molecules of the data set with a limited number of
guiding compounds only. The ultimate result of this study is a
simple equation to predict whether a compound will be able to
form a clathrate with cephradine or not. The procedure
developed may also be applicable for other molecular clath-
ration problems, or more generally for other problems in host–
guest chemistry. The method described in this paper requires
that for the host–guest system under investigation a series of
suitable guest molecules are known. Such a series of suitable
guest molecules can be found by trial and error experimenta-
tion. In case the structure of the host–guest complex is known,
docking in the hosting cavity can be a useful tool to assist the
search for suitable guest molecules. When a series of suitable
guest molecules has been discovered, the following procedure
may lead to the prediction of a model equation.

1. Composition of a data set. Select a series of molecules
comprising both suitable guests and molecules that do not form
a complex with the host under investigation.

2. Calculation of the similarity matrix. Calculate a molecular
similarity matrix using an appropriate software package such as
Tsar.10 Optimise the shape overlap of the molecules, followed by
calculation of their charge distribution similarity index in the
orientation found.

3. Guiding set optimisation and deduction of a model. Initialise
a genetic algorithm (GA) by making a random selection of
‘chromosomes’ containing compound ID’s corresponding to
the similarity matrix calculated in step 2. Start the GA cycle,
which consists of the following steps. First, models based on the
molecular similarities of the molecules in the data set with the
molecules of the selected guiding sets are derived using linear
discriminant analysis (LDA) and subsequently evaluated by
LOOM. The guiding sets of the best performing models are
reproduced for the next cycle, which is repeated until a desired
LOOM result is obtained or after the maximum allowed num-
ber of cycles has been reached.

4. Evaluation of the model using a test set. Select molecules for
an independent test set, which is predicted by the model and
tested experimentally for complexation with the host under
investigation. In case the complete data set is sufficiently large,
it can also be divided in a training set and test set prior to the
GA optimisation (step 3). The model can then be evaluated by
the corresponding test set.

D = �0.35 × S83 � 0.44 × S86 � 0.83 × S113 + 0.36 (1)
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Table 4 Prediction of complexation for 15 arbitrarily chosen compounds

ID a Name S83 b S86 b S113 b D c Model d Exp.e 

5 1-Naphthol 0.400 �0.132 0.400 �0.054 y y
12 3-Aminophenol 0.313 0.041 0.400 �0.099 y y
19 Benzoic acid 0.535 0.208 0.2000 �0.085 y y
25 1,2,3,4-Tetrahydro-1-naphthol 0.399 0.019 0.310 �0.046 y y
45 4-Aminobenzoic acid 0.413 �0.024 0.205 0.056 n n
57 2-Bromonaphthalene 0.138 0.013 0.338 0.025 n n
61 Nitrobenzene 0.618 �0.052 �0.232 0.359 n n
71 Cyclohexanecarboxylic acid 0.401 0.481 0.187 �0.148 y f n
74 Cinnamic acid 0.214 0.057 0.139 0.145 n n
81 2-Aminobenzamide 0.587 0.461 0.179 �0.197 y y
88 Methyl 3,5-dihydroxybenzoate �0.291 �0.244 0.143 0.236 n f y
95 1,3-Diaminobenzene 0.042 �0.148 0.457 0.031 n n

101 1,6-Dihydroxynaphthalene 0.235 �0.098 0.472 �0.071 y y
108 4-Hydroxyphenylacetic acid �0.205 �0.238 0.327 0.122 n n
119 1-Naphthylamine 0.257 0.086 0.519 �0.199 y y

a The ID refers to the row ID of the molecule in the matrix (see Table 2). b The similarity indices are rounded to three decimal places. c D is the
discriminant parameter calculated according to eqn. (1). d Prediction of the model, y means clathrate formation, while n means no clathrate
formation. e Experimental outcome, y means clathrate formation, while n means no clathrate formation. f Incorrect prediction.

Experimental

Calculation of data matrices for QSAR

Generation of the 3-dimensional molecular structures for the
data set was achieved by first drawing them using the program
SYBYL and subsequent energy minimization of the structure
by molecular mechanics using Gasteiger–Hückel charges.9

After that, the structures were exported as.mol2 files which can
be imported in the program Tsar.10 Prior to calculation of the
similarity matrices, for each structure a second energy mini-
mization was performed using the semi-empirical method
included in Tsar (the VAMP module). The similarity matrices
were calculated using the program Tsar.10 Similarity indices
have been calculated as follows. Initial alignment of two mole-
cules was made by overlaying their centres of mass. Alignment
was then optimised based on shape overlap. The optimisation
consisted of two steps. First a full rigid search was performed
using angular increments of 18�. Next a simplex optimisation
was applied to fine-tune the optimal alignment. At optimal
alignment both the shape similarity index and the charge
similarity index were calculated. The resulting matrices were
Xshape, containing the shape similarities at optimal shape
overlap, and Xcharge, containing the charge similarities at
optimal shape overlap. The similarity indices were calculated as
is shown below.

Also the charge similarity and shape similarity at optimal
charge distribution overlap have been calculated.11 The result-
ing matrices revealed virtually the same information as Xshape
and Xcharge according to principal component analysis, cluster
analysis and linear discriminant analysis.8 Hence, only Xshape
and Xcharge were discussed in this paper to avoid confusion.

QSAR modelling

Statistical calculations were performed using R 18 version
0.63 on a Linux Pentium II machine (266 MHz). Genetic
algorithms for guiding compound selection were performed
on SUN workstations using the PGAPack library.19
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